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Organic Molecular Markers

Reduced organic 
compounds used as tracers 
for sources of organic 
carbon

Highly source specific
Small fraction of emissions

Are these compounds stable 
under conditions of long 
range transport?
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Compare ambient 
levels to emissions
Conclusion

Markers appear stable 
in LA

Some evidence of 
aging

Oleic acid
PAH, esp. downwind

Schauer et al. 96; 
Rogge et al. 96

Evaluation of 
Stability of 

Molecular Markers 
in Los Angeles

Hopanes
Oleic Acid

Dicarboxylic
acids

PAH
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Other evidence for photochemical 
oxidation of tracers

PAH
Significant evidence for oxidation from field and laboratory
Results illustrate complexity – composition, moisture, etc. effects
Kamens et al. 1988, Nielsen 1988, Finlayson-Pitts 2000

Oleic acid
O3 uptake experiments  -- γ ~ 10-3

Disconnect between laboratory results and atmospheric 
observations
Complexity of phase and mixture
Rudich et al. 2002, Morris et al. 2002, Smith et al. 2002

OH uptake
γ > 0.1 for alkanes, alkanoic acids, PAH, etc.

Levoglucosan
No evidence of acid catalyzed hydrolysis
Fraser et al. 2000

Cholesterol
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What are chemical time scales?
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Field Data from Pittsburgh 
Air Quality Study

Florence

Pittsburgh

Laboratory Data from
Smog Chamber

Carnegie Mellon University
10 m3 temperature-controlled chamber

PAQS Main Site

PAQS Regional Sites
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Mixing complicates examination of ambient data 
for evidence of photochemical aging
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Using a relative rate approach to separate 
mixing and aging
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Ambient data consistent with significant 
photochemical aging

Tracers for Vehicles Tracers for cooking
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Strong seasonal variation in Hopane/EC ratios. 
Photochemical aging of hopanes?

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ju
l-0

1

A
ug

-0
1

Se
p-

01

O
ct

-0
1

N
ov

-0
1

D
ec

-0
1

Ja
n-

02

Fe
b-

02

M
ar

-0
2

A
pr

-0
2

M
ay

-0
2

Ju
n-

02

Ju
l-0

2

H
op

an
e 

x 
10

00
/E

C

0

5

10

15

20

25

30

35

40

45

50

O
3 

(p
pb

v)



6

Upwind measurements of hopanes also 
suggest photochemical aging in summer
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Much lower levels of hopanes in regional aerosol during summer.
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What about mixing?
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Ambient Data

• Seasonal variation in some non-vehicular source of EC.
• Seasonal variation in fleet composition.
• Seasonal variation in hopane/EC ratio of motor vehicle emissions
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Seasonal variations in vehicle emissions?

0.01 0.1 1 10 100
0.01

0.1

1

10

100
Ambient Data

 Summer
 Spring/Fall
 Winter

NFRAQS
Average Diesel

NFRAQS SU Gasoline
Aveerage

H
op

an
e 

* 1
03 / E

C

Norhopane * 103/EC

Gas

Diesel
Cat. Gas

Diesel

Non Cat
Gas

0.01 0.1 1 10 100
0.01

0.1

1

10

100

 Summer
 Spring/Fall
 Winter

Ambient Data

Cass Average Diesel

H
op

an
e 

* 1
03 / E

C

Norhopane * 103/EC

(b)

Schauer
non-catalytic gas

Schauer
catalytic gas

0%

25%

50%

75%

100%

Ju
ly

A
ug

Se
pt

O
ct

N
ov D
ec Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
ne

Ve
hi

cl
e 

O
C

CASS NFRAQS

Laboratory Aging Experiments in a  
Smog Chamber

Ozone Monitor

SMPS

T=22 ± 2 oC, 
RH= 7 ± 3%

GC-FID

CMU smog chamber

2-butanol
(radical 

scavenger)

1500 µg/m3 aerosol

Gas phase 
tracers

Quartz Filter 
Samples

GC-MS Ozone

Non-reactive tracer: pentane
Reactive: 1-butene, propene

Model Meat Smoke 
Aerosol

4 & 14 component 
mixtures  – alkanoic

acids, alkenoic
acids, sterols, 

alkanes, …
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Ozonolysis of oleic acid and cholesterol in 
model meat smoke aerosols

Time from O3 injection, s
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4-mix (30% oleic acid, 30% cholesterol)
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14-mix (17% oleic acid, 4% cholesterol)

The rate constant for ozone aging of cholesterol and oleic acid 
depends on the mixture composition.
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Relative rate analysis of 14 component 
model meat smoke mixture
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Condensed-phase relative rates Mixed-phase relative rates

• k(oleic)/k(propene) = 6.4 ± 0.8 
• k(nervonic)/k(propene) = 6.8 ± 0.8

• k(cholesterol)/k(oleic) = 0.19 ± 0.08
• k(palmitic)/k(oleic) = 0.05 ± 0.06 
• k(pentacosane)/k(oleic) = 0.006 ± 0.009
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Decay of cholesterol may be significant under 
conditions of regional transport
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Are molecular markers stable?

Both field and laboratory data suggest that 
molecular markers may not be stable under 
conditions of regional transport.
Dependence of oxidation rates on mixture 
composition complicates interpretation of 
laboratory experiments
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